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The reduction of the short range translational symmetry of a polymer chain 
(caused by, for example, the loss of an isoconformational structure) is 
accommodated as a periodic perturbation in a semi-empirical tight-binding 
LCAO calculation. Using the results of a calculation on an unperturbed chain 
in a perturbational mixing procedure an energy matrix can be calculated 
whose order is equal to (or even less than) that of the unperturbed structure. 
The method is applied to the generation of various chain conformations from 
all-trans polyacetylene and is shown to work successfully. 
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1. Introduction 

The effect of a reduction in the translational symmetry of a polymer may be 
investigated by a number of quantum mechanical methods, including the 
introduction of chain disorder via random function generators [1] or Green's  
function averaging procedures [2], and single-site perturbation of a periodic chain 
[3]. A different approach [4] to the problem is to reduce the short range order of 
the chain while retaining the long range order as a true periodicity; in this way 
the problem can still be treated by (for example) tight-binding LCAO methods 
[5] based on the cyclic lattice condition, but an appropriately larger unit cell is 
thereby defined. In such a case the degree to which the chain symmetry could be 
reduced is obviously limited by the eventual size of the unit cell and the 
prohibitively large number of basis functions for construction of the energy 
matrix. 

Recently a procedure based on the latter approach was proposed [6] which 
obviated the need for an enlarged unit cell. This was done by perturbing the band 
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orbital functions calculated for a high-order chain by means of interaction changes 
between the atomic orbitals of adjacent segments, arising from the adoption of a 
slightly less ordered chain conformation. The theory was specifically presented 
for, and applied to, the perturbation of all-trans polyacetylene (ATPA) to the 
trans-cis conformer (TCPA). The lowest o- band and the ~- band of TCPA 
calculated in this way from A T P A  data was found to be in quite good agreement 
with the results of the direct (unit cell enlarged) calculation on TCPA. There were, 
however, some unsatisfactory features of this method: (i) the second o- band 
showed poor agreement with the results of the direct calculation, (ii) a scaling 
factor of �89 was rather arbitrarily applied to the perturbation energies, and (iii) 
TCPA was the only conformer whose band structure could be thus calculated. 

In the present work the theory underlying the perturbation of a high-order 
polymer chain whose tight-binding LCAO functions are known will be presented 
for application to a polymer with quite a general periodic configuration, and 
perturbative interactions will not be limited to adjacent segments. The band 
structures thus calculated will be required to agree exactly with those from the 
direct method without the use of any scaling factor. 

2. Theory 

2.1. Perturbation Matrix 

We write the wave function of the unperturbed chain as a linear combination of 
the u atomic orbitals (AOs) g~ 1 in each repeat segment jl ,  the resulting segment 
functions being themselves combined in accordance with the Bloch theorem [7]i 

• 1 8 9  . 

qG(k) =N-1/2 E e 'h" i c,~(k)x{'. (1) 
h = 0  r = l  

N is the (practically infinite) number of segments comprising the chain and k the 
wave vector defined as a continuous variable within the range 0 ~< k < 2rr. This 
k range defines a continuum of functions ~ (k) and of energies Ea (k) which we 
take to satisfy the equation 

H o ~  (k) = E ~ ( k ) ~  (k) 

where H ~ is the Hamiltonian of the unperturbed chain. The energy continuum 
E~ constitutes the ath energy band, of which Eq. (1) leads us to expect a total 
number ~,. 

Let  us now think of the continua ~ ( k )  and E~ as a set of quasi-discrete 
"microstates" of the c~th band. Then any perturbation of the chain that can be 
described by the addition of a term V to the Hamiltonian H ~ may be treated by 
forming linear combinations of the microstate functions ~ ( k ) .  These new 
functions 

v 
1 % = E E g~ (k,),I,~ (k,) 

i o~ 
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will be eigenfunctions of the Hamiltonian H a = H ~  V of the perturbed chain 
w i t h  energies E~ defining altered bands: 

1 1 1 1 H ~Xrq=Eq~q. 
The energy matrix H a whose diagonalization provides the desired energies Eaq is 
defined by its elements: 

H~t3 (k l ,  k 2 ) =  E ~ ( k l ) & , r  k 2 ) +  V,~(ka ,  k2) 

where, using Eq. (1), the general element V~e (kl, k2) = 5 ~ *  (kl) V~o  (k2) d r  of 
the perturbation matrix is given by 

•189 
V,~t3(kl, k 2 ) = N  -1 ~ e i(6k~-hk') i * hi= C rlr (kl)cr2~ (k2) Wqr2. (2) 

]1,/2--0 r l , r 2  

ifi2 - -  h i2 The quantity V,~,= = 5 ,,v,~ VXr~ dr measures the change in the interaction between 
X~ in segment h and X~ in segment/'2 as a result of the perturbation of the chain. 
In terms of the Hamiltonian operators of the chain in the unperturbed condition 
(H ~ and in the perturbed condition (H,), hi= Vq~ 2 is defined by 

]1[2 f vJl L.l-l,vJ2 dT_ ff a/J2 L.T~ dT V r l r 2  ~ A r l l .  A r  2 A t 2  ~ 1  A r  2 

JlJ2 )1 _ ~ ~r;,J2 ~o (3)  
~ -  ( n r l r 2  , * * r l r  2 ,  �9 

The perturbation V which we shall consider will be one which lowers, but does 
not destroy, the translational symmetry of the chain. The new periodicity of the 
chain must now be described using a larger repeat cell a (Fig. 1) so as to include 
n segments rather than a single segment as was the case for the unperturbed chain. 
This n-segment periodicity must now be introduced into V(kl,  ka) in (2) so as to 
remove the infinite quantity N in this expression. Since the new translational 
symmetry of the chain is reflected in the AO perturbation element --rlr~,Vili2 whose 
value depends on the segment jl  of the first AO and the separation/'  = / ' 2 - j l  of 
the second AO, and we shall rewrite this as V~'ir2 (j). The h-periodicity of h V~r~ (j) 
is also exhibited by the parameter 

U h ( j ) -  2 * J~ c ~,, (ka)%~ (k2) V ~  (j) (4) 
r l , r 2  

n-1 0 I 2 n-1 0 1 

Jl -I 0 I 2 n-1 n n+1 

Fig. 1. Segments of the isoconformational chain and the n-segment reference cell (boxed) of the 
perturbed chain 

1 The n-segment celt defined here is a "unit cell" only with respect to the periodicity of the 
perturbation. The true unit cell of the new conformer chain, defining its translational symmetry, may 
contain 2n segments (see Fig. 3), 
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whose dependence  on k~, k2, ~ and/3 is omit ted  in order  to avoid a cumber some  
string of labels. The  per turba t ion  e lement  (2) now becomes  

•189 
Vc, t 3 ( k l ,  k 2 )  = N - 1  2 e ii~(k=-kO ~ e i i k 2 u h ( f )  (5) 

il =0 i = •  

where  the / '  = 0 condit ion is omi t ted  on the second summat ion  sign since A O s  in 
the same segment  (j~ = j2) do not per turb  each o ther  in the type of per turba t ion  
envisaged here. The  limits of the j summat ion  are not  specified since the ~.~(j) 
terms decay to insignificance beyond  a few segments  in either direction f rom j~. 
In order  to see how we may  eliminate the infinite quanti t ies f rom (5) let us write 
out  some of the terms involved in the two summat ions :  

Vo,~ ( k l ,  k2)  = N - l [ e - i ( k ~ - k ' ~ { e - i k ~ u - l ( - -  1) + e i k ~ u _ l ( 1 )  + e2ik~u_l(2) + �9 �9 .} 

+ e~ -ik~ Uo( - 1) + e ik~ Uo(1) + e 2ik~ Uo(2) + �9 �9 .} 

+ e i ( k 2 - k l ) { e - i k 2 u l (  - -  1) + e lk=U1(1)  + e Z l k ~ u l ( 2 )  + �9 �9 .} 

+ e 2 i ( k ~ - k O { e - i k = u 2 ( - -  1) + e ik~ U2(1) + e21k= U2(2) + �9 �9 "} 

+ e i ( " - l ) ( k=-k '~{e - l k=un_ l (  -- 1) 

+ eik~Un_l(1 ) + e2ik~Un_l(2) + . . .} 

+ e l n ( k = - k , ~ { e - l k = u n ( - - 1 ) + e ~ k ~ u n ( 1 ) + e 2 i k ~ U , ( 2 ) +  . . .} 

+.. . . ] .  (6) 

The periodicity of U h ( j )  in/'1 means  that  Uh(j)  = Uh+n (j). There fore  the terms 
in curly brackets  in (6) repeat  after n lines; those in the first line (/'1 = - 1 )  for 
example,  are equal in value to those in lines 5 and 6 (jl = n - 1), and the terms 
mult iplying e ~ in line 2 are equal in value to those multiplying e ~n(k~-k0 in line 
7. There  are therefore  only n distinct sets of terms, each of which occurs N / n  

times in (6), which becomes  

V~t3(kl, k 2 ) = N - l [ {  " ' '  + e ~  + e l n ( k 2 - k O  + e 2 i n ( k 2 - k l )  + " " "} ~ e i i k 2 g o ( j )  
i 

{ .  �9 �9 + e~(k=-kO + e~(~+l)(k=-kO + e~(2"+l)(k=-k') + . . .} ~ eiJk= U I ( j )  
i 

{ ' �9 �9 -~- e 2 i (k2-k l )  + e i (n+2)(k2-kl)  -4- e i (2n+2)(k2-kl)  

+ . . .  } Y~ e~Jkzu2(/' ) 
] 

{ ' �9 �9 "-~ e i (n -1) (k2-k l )  .4- e i (2n-1) (k2-k l )  -t~ e i (3n-1) (k2-k l )  

+ .  �9 . } ~ e i jk2v.- l ( j )  
I 
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5= 

= N  1 { . . .  +l+e,,(ka-k,)+e2i,~(k2-k,~+ . . .  }52e,k~Uo(/,) 
i 

{ . . . .  t- 1 +e~"(k~-k'~+e 2~n(k2 k~+ . . . } i e~/"k2Ul(/') 
/̀ 

+e2~(k2-k~{ �9 �9 �9 + 1 +ei~(k2-k') +e2i~(k2-k') + " " " } ~ e q k 2 u 2 ( / , )  
/̀ 

q -e i (n -1 ) (k2-kx ){  �9 ' �9 q- 1 q - e  in(k2 kl ) - l -e21n(k2-kl)  

+ ' ' ' }  e 'k2Un-l(1 . 
1 

The common terms in each line, 

J ( k l ,  k 2 )  ~-  X - 1  ~ e inl(k2-kl) 
1 

sum to zero unless we have the condition that k 2 -  kl is zero or an even multiple 
of or. If this condition is obeyed all N / n  terms in the summation are unity, leaving 
J (k l ,  k2) with the value n-1. The perturbat ion element is now given by 

n--1 

V,~t3(kl, k 2 ) = J ( k l ,  k2) E Y. e'k2U`/d/,). (7) 
h = 0 / = •  

Although we have achieved our objective of eliminating the infinite quantities N 
from (5) the result (7) is not in the most convenient form for programming since 
it involves a / .-summation in both positive and negative directions. A more 
economic expression would avoid the computat ion of the/, ~< - 1 terms Uh(/,) for 
each/,a since the same quantities would in any case be evaluated for some (other) 
/'~ and a positive/,. In other words we shall seek to replace the second summation 
in (7) with one over positive/,. 

Segregation of the positive and negative/ '  terms in (7) yields 

n--1 

V~t~(kl, k2)=J (k~ ,  k2) Y. 2 [eiik2Uh(/')+e-~ik2u/.l(--/')] �9 (8) 
./1=0 ./~1 

Let us concentrate on the second (summed) term in (8). Expansion according to 
(4) gives the result: 

n--1 - 
52 Y e <j2-̀ /1)ik2 i * ~/̀ /,J2 crl~ (kl)cr2t~(k2)--r~ 

1"1 = 0  `/2(<]1) r~, r2 

where we have reverted to the (jl,l'2) notation. Since /'1 is still in the range 
0~</,1 ~ n - 1  the A O  X~[ is in the reference cell depicted in Fig. 1. Since/,2</,1 
the other interacting A O  X~ implied by the term must lie either within the same 
cell or in one to its left, in the sense of the figure. In the latter case we should like 
to replace this pair of AOs  by one in which one A O  is in the reference cell and 
the other in a cell to its right. 
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To do this note that the n-segment periodicity of the chain renders the quantity 
Vh& invariant to an addition of the same multiple A of n to jl  and/'2. The result, rlr2 
V]I +An, J2+An VJ2+An, Jl+An rlr2 , can equally well be written -- ,m since the same AO interac- 
tions are implied. Now the sense of the labels is that the first subscript and 
superscript refer to an AO within the reference cell and the second to an AO in 
the same cell or in one to its right; we therefore decide to define the value of A 

/2+An as that number which brings the first AO, Xr2 into the reference cell. The 
addition of An to the labels displaces the pair of AOs to the right; the second AO 

]1+An Xrl is shifted to a position to the right of the former- - jus t  as is required for the 
algorithm. 

The second summation term in (8) is now 

n--1 
~ e(i2-il)ikz i * vi2+An'il+'~n C~l~(kl)c~2t~(k2)--~2rl 

11=0 1"2(</'1) rl, r2 

~. ~. e (J2-yl)ik2 �9 VY2J1 
=I1(>I2) I2=0 ~l, r2c ' l~(k l )%~(k2)- r  m where Y2=/'2 +An 

n--1 
Ze-(J2-]1)ik2 i :g ]ij2 = cr:~(kl)c~it3(k2) V~1~2. 

j l = 0  i2(>/'1) rl, r2 

Between the last two lines the non-significance of the summation labels outside 
the summations has been used to replace J1 and ./2 by 12 and/'1 respectively and 
to interchange rl and r2. The expression for the general element of the perturba- 
tion matrix therefore follows from (8), together with the above development of 
the second term, as 

n--1 

V~,~(kl, k2)=J(k~, k.,) E E E [e~Jk~c*lo~(k~)cr2,~(k:) 
]1=0 j ~ l  rl, r2 

-ijk 2 ~< jlJ2 + e c r2o~ (k 1)c,'1t3 (k2)] Vrlr 2 �9 (9) 

2.2. Internal Segment Symmetry 

While Eq. (1) appears to predict a total of u energy bands arising from the 
interaction of u AOs in the repeat segment of the undistorted polymer it must be 
remembered that the presence of certain symmetry elements in the unit segment 
may render some of the bands equivalent. For example the glide plane or screw 
axis in the all-trans conformations of polyethylene or polyacetylene determines 
the relative coefficients of the symmetrically equivalent AOs in the two halves of 
the segment and hence defines the segment symmetry orbitals 

�9 ~(k) = N -1/2~Le'jk ~ c ~ ( k ) [ x i +  e�89 (10) 
j r = l  

according to the application [8] of the line group symmetry of the chain. This pair 
of functions, related by a relative displacement of k = 2~, gives rise to the two 
equivalent dispersion energy curves E~ (k) shown in Fig. 2. These, like each of 
the functions in (10) require a k range 0 to 4rr for their complete description. 
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r 

k 
?i n z l~ 

Fig. 2. Two equivalent energy bands that may result from the presence of certain symmetry elements 
within the polymer repeat segment 

Thus the effect of the internal symmetry of the segment is to define either (i) the 
complementary  pair of symmetry orbital functions ' t '2(k)  and their associated 
energy bands E~ (k) in the range 0 <~ k < 27r or (ii) one of these functions and its 
energy band in the extended Brillouin zone range 0 ~< k < 4~r. 

This discussion is relevant to the selection of k values for the construction of 
the perturbat ion matrix V whose elements were defined in (9). Because of the 
discriminating character of the function J ( k l ,  k2) the only kl,  k2 combinations 
leading to non-zero V~t3 elements are those in which k l = k 2  or ka = 
k2+in teger  x 2~r. The latter relation could be used only in case (ii) of the last 
paragraph when the internal symmetry  allows the selection kl -- k2 + 2~r. However  
calculations and programming are clearly simpler for case (i), when the two parts 
of the energy band may be treated as if they were separate bands and the 
calculation of the perturbat ion matrix involves a single k value, e.g. we would 
calculate the "vertical" element V~,~+I (k, k) rather than V ~  (k, k + 2~r). This is 
the alternative which we shall adopt. 
As a result the energy matrix H a to be diagonalized is given by 

Ha(k) = rF~ +V(k)  (11) 

where the rows and columns refer to different bands with the same k value, ~:~ 
is a diagonal matrix of zeroth order energies [E~ for a = 1 to u] and the 
elements of V may be derived from (9) using the arguments of the present  section: 

n- -1  
Le crl~(k)cr2t3(k) -Uk , hi2 + e  c r 2 ~ ( k ) c r l ~ ( k ) ] V ~  ~. (12) 

1 1 = 0  1 ~ 1  ra,  r2 

The Hamil tonian matrix H a defined by (11), (12) and (3) may now be constructed 
and diagonalized for any selected values of k in order to yield the new band 
structure. 
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3. Application 

3.1. M O  Method 

Before applying the procedure in a numerical calculation a small complication 
must be pointed out. 

Let us recall the objective of this work which was stated in the last paragraph of 
Sect. 1. The method was to offer a band structure computational procedure for 
polymer chains which were structurally identical but in different conformations. 
This has been done through a perturbational mixing of orthogonal functions ~ 
for a chain of isoconformational segments followed by the calculation of the 
energy eigenvalues defined by the equation det [E~ + V~ o - E  11 = 0. NOW this 
should produce identical numerical results as would be obtained (with greater 
computational labour) from a direct calculation on a chain embodying the 
anisoconformational segments in a larger unit cell by evaluating the energy 
eigenvalues in the usual way from the equation det ]H,s -ESrs] = 0. But in order 
to judge the success of our procedure we must firstly ensure that the two methods 
whose results are to be compared are entirely compatible. A simple examination 
shows that the perturbational mixing method does not completely correct for that 
part of the normalization of ~1 arising from the change in overlap integrals Sr~ 
upon adoption of the new conformation. Consequently, since our primary objec- 
tive at this stage must be a demonstration of the success or failure of the general 
method proposed we decide to adopt the zero-overlap condition (Sr~ = &s) in the 
calculation of the isoconformational (zeroth order) functions (1). 

As a simple MO method on which to try the procedure the extended Hhckel 
theory [9] (EHT) was chosen, but because of the neglect of the overlap integrals 
in the diagonalization of the energy matrix the factor K in the Wolfsberg- 
Helmholtz [10] expression for Hr~ was changed from the commonly used value 
of 1.75. The best fit with the results of the "full" E H T  method (in which the 
overlaps were included) when applied to the calculation of the band structure of 
all-trans polyacetylene was obtained [11] with K - 0 . 8 .  Although the use of this 
value showed a tendency to compress some of the (unoccupied) high-energy 
bands the structures of the valence and conduction bands were well reproduced; 
consequently in the calculations described below, where attention in the dis- 
cussion section will be largely on the latter band types, the value K = 0.8 was used. 

3.2. Conformational Perturbation and Codes 

In this work we select all-trans polyacetylene (ATPA), -(-CH=CH-)-n, as our 
unperturbed chain. We consider periodic perturbations which allow 180 ~ internal 
rotations around certain bonds thus producing another planar conformer of 
ATPA, but which has a lower translational symmetry. Although all CC and CH 
bond lengths are assumed invariant (1.40 and 1.10 ~ respectively) we decide to 
limit the cis and trans conformations to those in a chain in which only alternate 
CC bonds are capable of internalrotat ion,  In other words the conformers to be 
produced are those that would be obtained from an alternating polyene chain in 
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which the CC bonds of higher order would preclude internal rotation. This 
selection of conformers eliminates the sterically strained chains containing adja- 
cent cis linkages. How close such a model is to real polyene chain is uncertain 
but a rather sparse set of experimental data and good quality calculations (see 
Karpfen and Petkov [12] for a recent ab initio work and a discussion of some 
experimental implications) would appear to point to an alternating chain. 

The AO perturbation elements --rlr2VilJ2 defined in (3) were calculated from the 
Wolfsberg-Helmholtz interaction terms between the AOs of the origin cell and 
those to their right (Fig. 1) for the polyacetylene (PA) chain in the all- trans and 
in the selected conformation. The latter was specified by an n-digit code 
J 1 Y z J 3  �9 ' " J ,  where n is the number of segments in the repeat unit and where Ji 
is 0 if the ith "permitted" chain link is trans and 1 if it is cis. For example a chain 
in which each 3rd and 5th link is cis while the rest are trans would have the code 
0 0101, though the cyclic order is immaterial, so that 01010 etc. would be equally 
good. Fig. 3 shows some examples of PA conformers defined by their codes. 
Although we refer to the conformers below in this way (PA-J1J2 �9 �9 �9 Jn) it will 
be convenient to retain the label ATPA for the all-trans conformer (otherwise 
PA-0). 

An algorithmic subroutine was written to calculate the atomic coordinates of the 
perturbed chain from those of the ATPA chain and the configuration code. Then 
from the difference between the Hrlr~ values for the two conformations the 
elements of the perturbation matrix were calculated using (3) and (12). (The 
j-terms in the second summation of (12) showed a rapid decay--in consequence 
very few segments required to be taken for convergence.) 

PA-O (ATPA) 

/ --k 
PA -1 

k__/ \ / P _o, 

/ - -k 
/ k__ / 

\ / \ / 

PA-O01 

k _ /  

/--k / 

/ - -k  
/ - -k / - -  

PA-011 

Fig. 3. Conformations of polyacetylene and their codes. Internal rotation is "permissible" only around 
alternate bonds (thin lines) 
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4. Results 

4.1. A T P A  --> P A - 0 1  

When the procedure described in Sects. 2 and 3 was applied to the calculation of 
the band structure of an arbitrarily chosen PA conformer, the results were found 
to be identical to those obtained from a "direct"  E H T  calculation on the same 
conformer. The validity of the method is therefore confirmed. 

Before discussing the general features of the conversion from all-trans to other 
conformations let us look at some of the details of the calculation involved in the 
perturbation of A T P A  to PA-1 (the latter is the conformer called TCPA in Ref. 
6 and refered to in Sect. 1). This conversion, corresponding to a 180 ~ rotation 
about each permissible chain link, constitutes the greatest degree of perturbation 
of the type defined here, and we discuss it as a model system. 

The band structure of the valence and conduction bands in PA-1 is shown in Fig. 
4 together with that of the corresponding bands in A TP A  which were used as 
basis microstate wave functions in the calculation. (Note that although the 
unoccupied bands are not shown in the figure, for the reason discussed at the end 

E(k),(eV) 

~t 3b _ _ . _ ~ _ ~ _  
-10-I 3o ~ 

-30 - / / i  
,/ 

/ /  

-40- > / I / / / / /  

k 
- 5 O  I I I 

1 2 3 X 

Fig, 4. Energy  band  s t ructure  of PA-1 ( ) calculated f rom that of A T P A  ( . . . . .  ). (Bands are 
labelled so as to " c o r r e s p o n d "  be tween  A T P A  and PA-1,  with the moiety labels a and b as used in 

Fig. 2.) 
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Table 1. Energies -E(k) (in eV) at selected k 
conduction bands in ATPA and PA-1 

points for the occupied and 
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k la( r  lb(r  2a(r 2b(r 3a(~) 3b(~) 

0 ATPA 46.06 26.44 14.68 12.49 16.51 7.53 
PA-1 47.78 18.85 14.02 17.15 16.64 7.42 

7r/4 ATPA 44.29 25.34 14.52 13.68 15.97 7.71 
PA-1 45.21 20.07 13.21 17.72 16.01 7.66 

r ATPA 39.70 22.71 14.34 16.70 14.52 8.27 
PA-1 38.91 24.75 i4.12 15.54 14.43 8.35 

37/4 ATPA 33.69 22.23 14.78 18.56 12.64 9.29 
PA-1 32.08 28.43 17.60 13.18 12.53 9.40 

~r ATPA 27.50 27.50 16.31 16.31 10.78 10.78 
PA-1 31.79 24.81 21.86 12.10 10.91 10.67 

of Sect. 3.1, they were of course used to calculate the perturbation matrix 
elements according to Eq. (12).) Table 1 compares selected microstates for both 
conformers. Unlike the practice in Ref. 6 a comparison of E(k) values with those 
from the direct E H T  calculation will not be recorded since the two are identical. 
However  it should be noted that the bands obtained by the latter method, in 
which the true unit cell contains twice the number of basis functions as in ATPA, 
would have to be "folded out" in order to obtain a meaningfully comparable band 
structure. By this is meant that in the 0 <~ k ~< ~" portion of the Brillouin zone 
generally used to display the band structure the part E+(k) of a band such as that 
shown in Fig. 2 must be re-labelled E(�89 and the other half of the band E_(k) 
must show its continuity with the latter dispersion energy function by being 
re-labelled 1 E 0 r  -~)k.  

The results (Fig. 4 and Table 1) show the removal of the "pseudo-degeneracy" 
of the A T P A  bands at the X point (k = 7r) as expected from symmetry arguments 
[8], leading to the creation of band gaps (within the context of the E H T  
approximations 2) for the lower cr valence band and, to a smaller extent, in the 7r 
conduction band. The directions of the band displacements in the A T P A  ~ PA-1 
conversion can be discussed in terms of first order perturbation theory [6]. 

Let  us again recall our stated objective of seeking a method of performing a band 
structure calculation on a conformationally perturbed polymer without the need 
to consider an excessively enlarged unit cell. We have shown that this is possible, 
for by combining unperturbed chain functions under the action of a conformation 
perturbation the energy matrix for diagonalization is of order 10 rather than 20 
as it would be for PA-1 or 40 for PA-01 etc. using the direct MO method. 
Leaving aside the possibility of applying point symmetry considerations to the 
unit cell we now ask whether the size of the energy matrix may be still further 
reduced by applying approximations which do not incur unacceptable inaccuracy. 

2 Of course it may not be necessary to destroy the point group symmetry of the ATPA repeat 
segment in order to produce a band gap. A "perturbation" caused by the inclusion of some degree 
of configuration interaction into the calculation may also reveal such a gap [13]. 
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One possibility would be to combine fewer bands than the total number of 5. We 
might expect that the bands substantially different in energy from the one 
considered would have negligible effect on the energy shift of the latter. The 
lowest band was selected for this investigation. Fig. 5 shows the result of (a) mixing 
just the two parts of this band, (b) including in addition the second (or) band, and 
(c) adding the other two (unoccupied) bands. Note that 

(i) case (a) was also followed in Ref. 6, 
(ii) for symmetry reasons the ~- bands are not involved in the mixing, and 
(iii) case (c) corresponds to the "exact"  calculation whose results are displayed 

in Fig. 4 and Table 1. 

The results show that the ATPA band investigated requires interaction with at 
least the next band in order to obtain a good approximation of the corresponding 
PA-1 band. In this case, therefore, the first band calculation could indeed be 
reduced to a set of energy matrices of order 4 rather than 10 (if the perturbation 
is applied without the present approximation) or 20 (the "direct"  method). 

4.2. The Behaviour of the Ir Bands Towards the Loss of All-trans Conformation ; 
an Approximation Procedure 

Having subjected the ATPA chain to perturbations which converted it to a series 
of cis/trans conformers we select for discussion the ~r bands out of the total band 
structures. This is because of the important role of the energy gap between 
occupied and conduction bands in the properties of conducting polymer chains 
[14]. For this purpose we shall evaluate E _ - E +  at the X point of the Brillouin 
zone. Substituting k = ~r in (12) we get 

n--i + 

v~•177 = y y [ v g ' , ( i ) + v ~ ( / ) ] c o s j ~ -  
i 1 = 0 / = 1  

and (13) 
n--1 + 

V_+=2in-lc,c+ • y~ [ V / , b ( / . ) s i n  �9 1 . 1 (1 + ~)Tr- V ~  (j) sin (1 -~)~r] 
] 1 = 0  j ~ l  

where the labels + and - refer to the "pseudo-degenerate"  microstates at the 
X point where the E• curves cross, and subscripts a and b denote the two 
C(2p,,) AOs in the ATPA unit segment which are related by the screw axis 
symmetry of the segment. Finally this point symmetry has been used [8] to write 

__ �89 C• =e c• 

which permits the dropping of the a and b labels in the coefficients, and these, 
c• at the X point, will be written simply as c~. 

It was previously shown [6] that the most important Vr (f) term in (13) for the 
perturbations to the ~r MOs was V~o (1) when segments jl  and jl + 1 are in the 
cis configuration (otherwise V/~o(1) is of course zero); the next largest term, 
V ~  (2) (with/'1 and jl + 1 still cis), is only 3% of the former. If we could neglect 
all but this term in (13); there would survive only the second order term, which 
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Fig .  5.  B a n d  1 of  A T P A  (. �9 �9 ) a n d  i ts  p e r t u r b a t i o n  to  t h a t  o f  P A - 1  by  m i x i n g  in  (a) j u s t  b a n d  1 ( -  - - ), 

(b) b a n d s  1 + 2 ( . . . .  ) a n d  (c) a l l  t h e  b a n d s  ( ) 

becomes 

n--1  

V_+=-2in-~c*_c+ ~, V~b(1). 
i 1 = 0  

Substituting Vab(1)=-0 .1372  eV from (3) and the Wolfsberg-Helmholtz rela- 
tion, and c*_c+ = 0.5000 from the results of the E H T  application to A T P A  (or 
just the normalization condition), the energies Ex of the perturbed chain at the 
X point, are given by 

E~ - Ex V*+ 
V+ EOx_Exl = 0  

where E ~  = -10 .783  eV) is the energy of the A TP A  ~- band at k = ~-. The band 
energies at the position of the gap are therefore 

-~ n- i  v ~ ( 1 ) .  (14) 

The application of (14) to a PA conformation specified by the n-digit coding 
system introduced in Sect. 3.2 uses the value V~*b (1) = --0.1372 eV if Jh = 1 and 
Vi~o (1) = 0 if Jh = 0. For PA-0011,  for example, the energies would be calculated 
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Table 2. Energies (in eV) of ~- valence Ex(1) and conduction Ex(2) bands, and the 
energy gap IAEx[ at the X point for some PA conformers, using (a) full perturbational 
mixing theory and (b) the approximation of Eqn. (14) 

Eqn. (12) Eqn. (14) 

- E x ( 1 )  - E x ( 2 ) l a E x l  -Ex(1 )  - E x ( 2 )  IAExl(2) 

PA-1 10.91 10.67 0.24 10.92 10.65 0.27 
PA-01 10.84 10.72 0.12 10.85 10.71 0.14 
PA-001 10.82 10.74 0.08 10.83 10.74 0.09 
PA-0001 10.81 10.75 0.06 10.82 10.75 0.07 
PA-011 10.87 10.71 0.16 10.87 10.69 0.18 
PA-0011 10.84 10.72 0.12 10.85 10.71 0.14 
PA-0 10.78 10.78 0.00 10.78 10.78 0.00 

as 

E~c = -10 .783  +�88 x 0.1372(0 + 0 + 1 + 1) = -10 .85  or -10 .71  eV, 

indicating a band gap of 0.14 eV. The corresponding energies calculated by the 
procedure of the earlier sections, which does not involve the approximations 
made here, are respectively -10 .84  and -10 .72 ,  giving a band gap of 0.12 eV. 
Some band gaps calculated by both methods for a number of PA conformers are 
given in Table 2. The deficiency of the nearest-segment approximation may be 
seen in the slightly worse results for those conformers containing JJl = ~+1 = 1 
linkages. It is clear that in such cases of neighbouring cis linkages the inclusion 
of Jl " Vrlr:~ (1) terms other than just the one in (14) would improve the accuracy. 

5. Discussion 

The economy of the method lies in the considerable reduction in the order of the 
energy matrix that can be achieved prior to diagonalization. This reduction can 
occur, not only through the application of the main theory which shows that the 
size of the matrix need not exceed that associated with the unperturbed chain but 
also through a judicious selection of bands for interaction. The reduction in the 
size of H rendered possible is important if (1) matrix diagonalization constitutes 
the rate-determining step of the computation, as might be the case in a semi- 
empirical method where the perturbation terms can be rapidly evaluated, or (2) 
the array storage capacity is limited. The release of the additional space might be 
profitably utilized to accommodate a polymer with a large unit cell in the 
unperturbed conformation, and the perturbation features to be applied could be 
made quite complex. 

Such a procedure could provide means of following certain properties of a 
polymer chain as it relaxes from a high-order structure, undergoes a phase change 
or becomes subject to the pseudo-random perturbations that might be incorpor- 
ated in a model of a liquid or solution. 



Periodic Perturbations of a Polymer 227 

References 

1. McCubbin, W. L.: Andr6, J.-M., Delhalle, J., Ladik, J., eds.: The quantum theory of polymers, 
p. 185. Dordrecht: D. Reidel 1978 

2. Martino, F.: The quantum theory of polymers, p. 169. Dordrecht: D. Reidel 1978 
3. Morton-Blake, D. A.: Theoret. Chim. Acta (Bed.) 51, 85 (1979); 56, 93 (1980) 
4. Suhai, S., Kaspar, J., Ladik, J.: Intern. J. Quantum Chem. 17, 995 (1980) 
5. Andrfi, J.-M., Delhalle, J., Ladik, J. (Eds.): The quantum theory of polymers, p. 1. Dordrecht: 

D. Reidel 1978; Andr6, J.-M., Ladik, J.: Proceedings of the NATO ASI on the electronic 
structure of polymers and molecular crystals, p. 1, B9: Plenum Press, and references therein 

6. Morton-Blake, D. A.: Intern. J. Quantum Chem. 19, 937 (1980) 
7. Bloch, F.: Z. Phys. 52, 555 (1928) 
8. Heine, V.: Group theory in quantum mechanics, Chapt. VI. Oxford: Pergamon Press 1960; 

Quinn, C. M.: Quantum theory of solids, Chapt. 2. Oxford: Clarendon 1973 
9. Hoffmann, R.: J. Chem. Phys. 39, 1397 (1963); Imamura, A.: J. Chem. Phys. 52, 3168 (1970) 

10. Wolfsberg, M., Helmholtz, U: J. Chem. Phys. 20, 837 (1952) 
11. Morton-Blake, D. A.: unpublished results 
12. Karpfen, A., Petkov, J.: Theoret. Chim. Acta (Bed.) 53, 65 (1979) 
13. Calais, J.-L.: Arkiv Fysik 28, 511 (1965); Berggren, K. F., Martino, F.: Phys. Rev. 184, 464 

(1969) 
14. Meier, H.: Dark- and photoconductivity of organic solids. Weinheim: Verlag Chemie GmbH 

1974; Keaton, J. E. (Ed.): Organic semiconducting polymers. London: Edward Arnold 1968; 
Baughman, R. H.: Pearse, E. M., Schaefgen, J. R., eds.: Contemporary topics in polymer science. 
Vol 2, p. 205. New York: Plenum 1977; Refs. 1 to 5 of Ref. 4 (above) 

Received September 22, 1980 


